Regulation of mitochondrial trafficking, function and quality control by the mitochondrial GTPases Miro1 and Miro2
نویسنده
چکیده
MicroRNAs (miRNAs) are short, 22–25 nucleotide long transcripts that may suppress entire signaling pathways by interacting with the 3’-untranslated region (3’-UTR) of coding mRNA targets, interrupting translation and inducing degradation of these targets. The long 3’-UTRs of brain transcripts compared to other tissues predict important roles for brain miRNAs. Supporting this notion, we found that brain miRNAs co-evolved with their target transcripts, that non-coding pseudogenes with miRNA recognition elements compete with brain coding mRNAs on their miRNA interactions, and that Single Nucleotide Polymorphisms (SNPs) on such pseudogenes are enriched in mental diseases including autism and schizophrenia, but not Alzheimer’s disease (AD). Focusing on evolutionarily conserved and primate-specifi c miRNA controllers of cholinergic signaling (‘CholinomiRs’), we fi nd modifi ed CholinomiR levels in the brain and/or nucleated blood cells of patients with AD and Parkinson’s disease, with treatment-related diff erences in their levels and prominent impact on the cognitive and anti-infl ammatory consequences of cholinergic signals. Examples include the acetylcholinesterase (AChE)-targeted evolutionarily conserved miR-132, whose levels decline drastically in the AD brain. Furthermore, we found that interruption of AChE mRNA’s interaction with the primatespecifi c CholinomiR-608 in carriers of a SNP in the AChE’s miR-608 binding site induces domino-like eff ects that reduce the levels of many other miR-608 targets. Young, healthy carriers of this SNP express 40% higher brain AChE activity than others, potentially aff ecting the responsiveness to AD’s anti-AChE therapeutics, and show elevated trait anxiety, infl ammation and hypertension. Non-coding regions aff ecting miRNA-target interactions in neurodegenerative brains thus merit special attention.
منابع مشابه
Arabidopsis thaliana MIRO1 and MIRO2 GTPases Are Unequally Redundant in Pollen Tube Growth and Fusion of Polar Nuclei during Female Gametogenesis
MIRO GTPases have evolved to regulate mitochondrial trafficking and morphology in eukaryotic organisms. A previous study showed that T-DNA insertion in the Arabidopsis MIRO1 gene is lethal during embryogenesis and affects pollen tube growth and mitochondrial morphology in pollen, whereas T-DNA insertion in MIRO2 does not affect plant development visibly. Phylogenetic analysis of MIRO from plant...
متن کاملGenetic Screening of the Mitochondrial Rho GTPases MIRO1 and MIRO2 in Parkinson’s Disease
MIRO1 and MIRO2 (mitochondrial Ras homolog gene family, member T1 and T2) also referred to as RHOT1 and RHOT2, belong to the mitochondrial Rho GTPase family and are involved in axonal transport of mitochondria in neurons. Because mitochondrial dysfunction is strongly implicated in Parkinson's disease (PD), MIRO1 and MIRO2 can be considered as new candidate genes for PD. We analyzed two non-syno...
متن کاملMitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins.
Correct mitochondrial dynamics are essential to neuronal function. These dynamics include mitochondrial trafficking and quality-control systems that maintain a precisely distributed and healthy mitochondrial network, so that local energy demands or Ca2+-buffering requirements within the intricate architecture of the neuron can be met. Mitochondria make use of molecular machinery that couples th...
متن کاملEMB2473/MIRO1, an Arabidopsis Miro GTPase, is required for embryogenesis and influences mitochondrial morphology in pollen.
The regulation of mitochondrial biogenesis, subcellular distribution, morphology, and metabolism are essential for all aspects of plant growth and development. However, the molecular mechanisms involved are still unclear. Here, we describe an analysis of the three Arabidopsis thaliana orthologs of the evolutionarily conserved Miro GTPases. Two of the genes, MIRO1 and MIRO2, are transcribed ubiq...
متن کاملEMB2473/MIRO1, an Arabidopsis Miro GTPase, Is Required for Embryogenesis and Influences Mitochondrial Morphology in Pollen W
The regulation of mitochondrial biogenesis, subcellular distribution, morphology, and metabolism are essential for all aspects of plant growth and development. However, the molecular mechanisms involved are still unclear. Here, we describe an analysis of the three Arabidopsis thaliana orthologs of the evolutionarily conserved Miro GTPases. Two of the genes, MIRO1 and MIRO2, are transcribed ubiq...
متن کاملMiro proteins coordinate microtubule‐ and actin‐dependent mitochondrial transport and distribution
In the current model of mitochondrial trafficking, Miro1 and Miro2 Rho-GTPases regulate mitochondrial transport along microtubules by linking mitochondria to kinesin and dynein motors. By generating Miro1/2 double-knockout mouse embryos and single- and double-knockout embryonic fibroblasts, we demonstrate the essential and non-redundant roles of Miro proteins for embryonic development and subce...
متن کامل